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For applications to the C∗-algebra classification programme, it
is important to compute KK(X ; ·, ·)-functor. In general, all one
can hope for is some kind of spectral sequence which converges
to KK(X ; ·, ·) with the E 2-term of cohomological nature.
The most useful case is in the form of a short exact sequence
of the form:

ExtC
(

H∗+1(A),H∗(B)
)
� KK∗(X ; A,B) � HomC

(
H∗(A),H∗(B)

)
for some homology theory H∗ for C∗-algebras over X , taking
values in some Abelian category C.
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For applications to the C∗-algebra classification programme, it
is important to compute KK(X ; ·, ·)-functor. In general, all one
can hope for is some kind of spectral sequence which converges
to KK(X ; ·, ·) with the E 2-term of cohomological nature.
The most useful case is in the form of a short exact sequence
of the form:

ExtC
(

H∗+1(A),H∗(B)
)
� KK∗(X ; A,B) � HomC

(
H∗(A),H∗(B)

)
This exact sequence should hold if A belongs to a bootstrap
class adapted to our situation.
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For applications to the C∗-algebra classification programme, it
is important to compute KK(X ; ·, ·)-functor. In general, all one
can hope for is some kind of spectral sequence which converges
to KK(X ; ·, ·) with the E 2-term of cohomological nature.
The most useful case is in the form of a short exact sequence
of the form:

ExtC
(

H∗+1(A),H∗(B)
)
� KK∗(X ; A,B) � HomC

(
H∗(A),H∗(B)

)
Once we have a Universal Coefficient Theorem of this form, we
can lift an isomorphism H∗(A) ∼= H∗(B) in C to a
KK(X )-equivalence A ' B, provided A and B belong to the
bootstrap class B(X ).
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Objects with projective dimension one
As usual, A has projective dimension one if there exists a
I-projective resolution of A of the form

0 // P1
φ // P0 // A // 0

Lemma

1 A has projective dimension one iff it is I2-projective.
2 Given I-projective resolution of A as above, there exists a

I-equivalence A→ ΣCφ.

Recall that our ideal I is presupposed to be homological, i. e.
I = Ker K

for some stable, homological functor
K : T→ C
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Theorem
Let A be an object of T with the property

C ∈ KerK =⇒ KK∗(X ;A,C) = 0

and of I-projective dimension one. Then, for any object B of
T, there exists a short exact sequence of the form

0→ Ext1
C(K(A)[1],K(B))→ KK(X ; A, B)→ Ext0

C(K(A),K(B))→ 0.

Moreover

Ext0
T,I(A, B) ∼= T/I(A, B) ∼=MorC(K(A),K(B))

and
Ext1

T,I(A, B) ∼= I(A, B[1]) ∼= Ext1
C(K(A),K(B)).
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By assumption, A has the I-projective resolution dimension
one, say 0→ P1

δ1−→ P0
δ0−→ A. We view it as an Iexact chain

complex of length 3. By above, there exists a commuting
diagram

P1
δ1 // P0

δ̃0 // Ã

α

��
P1

δ1 // P0
δ0 // A,

such that the top row is part of an Iexact exact triangle
P1

φ→ P0 → Ã→ ΣP1 and α is an Iequivalence.
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Claim: Under our assumption about A, α is an isomorphism
in T

We embed α in an exact triangle ΣB → Ã α−→ A β−→ B.
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ΣB

��
P1

δ1 // P0
δ̃0 // Ã

α

��
P1

δ1 // P0
δ0 // A

β
��
B

The object B is Icontractible because α is an Iequivalence.
Hence T(A,B) = 0 by our assumption on A. This forces β = 0,
so that our exact triangle splits: Ã ∼= A⊕ ΣB in T.
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First let us apply the functor T(·,B) to the exact triangle
P1 → P0 → Ã. The resulting long exact sequence has form

· · · ← T(P0,B)← T(Ã,B)← T(ΣP1,B)← . . . .

Since both P0 and P1 are projective, this implies that
T(Ã,B) = 0 and hence T(B,B) ⊆ T(Ã,B) vanishes as well. In
particular B ∼= 0 and α is invertible in T.
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Now back to the proof of the theorem. Let B be arbitrary.
Applying F (␣) = T(␣,B) to the exact triangle in T

P1
δ→ P0 → Ã→ ΣP1

gives a long exact sequence

· · · ← F∗(P1)
F∗(δ)
←−−−− F∗(P0)← F∗(A)← F∗−1(P1)

F∗−1(δ)
←−−−−−− F∗−1(P0)← · · · ,

We used the fact that Ã ∼= A in T. We cut this into short exact
sequences of the form

coker
(
F∗−1(δ)

)
� F∗(A) � ker

(
F∗(δ)

)
.

Since Pi are I-projective, T(Pi ,B) =MorC(K(Pi ),K(B)).
Since moreover K(Pi ) are projective in C,
ker F∗(δ) = Ext0C(K(A),K(B)) and
coker F∗−1(δ) = Ext1C(K(A)[1],K(B)). The claimed result
follows.
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It is useful to recall that there are natural monomorphisms:

T(A,B)
I(A,B) � Ext0T,I(A,B), I(A,B)

I2(A,B) � Ext1T,I(A,ΣB).

Thus I2(A,B) is the kernel of a natural map

I(A,B) � Ext1T,I(A,ΣB).
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The composition

I(A,B) � Ext1T,I(A,B) ∼= Ext1C
(
K(A),K(B)

)
is given explicitly as follows. Given h ∈ I(A,B), embed h in an
exact triangle ΣB → C → A→ B. This triangle is Iexact
because h is an Iphantom map, so that

K(ΣB) � K(C) � K(A)

is an exact triangle in C. Our map sends h to the class in

Ext1C
(
K(A),K(ΣB)

)
determined by this extension in C.
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Example

1 T = C∗(pt) - the category of separable C*-algebras
2 B be the bootstrap class from yesterday
3 F = K∗, the K-theory functor and
4 I = KerK∗.

The range category of K∗ is the category of (Z/2Z-graded)
abelian groups, hence has projective dimension one.
The above produces the usual UCT exact sequence for
C*-algebras in B. Note that, moreover, I2 = 0 (again since
every object has I-projective dimension one.
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T = KK(X )
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Our homology theory:

Definition
The filtrated K-theory over X comprises the collection of
functors which to a C∗-algebra A over X associates Z/2-graded
Abelian groups K∗

(
A(Y )

)
for all locally closed subsets Y ⊆ X

together with all natural transformations between these
functors.
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The starting point for our study of filtrated K-theory is the fact
that the covariant functors A 7→ K∗

(
A(Y )

)
are representable,

that is,

Theorem
For any C∗-algebras A over X and Y ⊂ X locally closed

K∗
(
A(Y )

)
= KK∗(X ;RY ,A)

for suitable C∗-algebra RY over X.
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Definition
Let (X ,�) be a partially ordered set. Its order complex is the
simplicial set Ch(X ) whose n-simplices are chains
x0 � x1 � · · · � xn in X and whose face and degeneracy maps
delete or double an entry of the chain. We denote its simplicial
realisation by Ch(X ) as well.

Equivalently, Ch(X ) is the classifying space of the thin category
that has object set X and a morphism x → y whenever x � y .
The order complex is the main ingredient in the construction of
the representing objects RY for Y ∈ LC(X ).
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The non-degenerate n-simplices in Ch(X ) are the strict chains
x0 ≺ · · · ≺ xn in X . We let SX be the set of all strict chains.
For each I = (x0 ≺ · · · ≺ xn) ∈ SX , we let ∆I be a copy of ∆n;
more formally, ∆I = {(t, I) | t ∈ ∆n}. We also let ∆◦I ⊆ ∆I be
the corresponding open simplex ∆n \ ∂∆n.
The space Ch(X ) is obtained from the union

∐
I∈SX

∆I by
identifying ∆I with the corresponding face in ∆J whenever
I, J ∈ SX satisfy I ⊆ J . Thus the underlying set of Ch(X ) is a
disjoint union

Ch(X ) =
∐

I∈SX

∆◦I . (2.1)

For I ∈ SX , let min I and max I be the (unique) minimal and
maximal elements in SX , respectively. We define two functions

m,M : Ch(X )→ X

by mapping points in ∆◦I to min I and max I, respectively. This
well-defines functions on Ch(X ) because of (2.1).
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Lemma
If Y ⊆ X is closed, then m−1(Y ) ⊆ Ch(X ) is an open subset
and M−1(Y ) ⊆ Ch(X ) is closed. If Y ⊆ X is open, then
m−1(Y ) ⊆ Ch(X ) is closed and M−1(Y ) ⊆ Ch(X ) is open. If
Y ⊆ X is locally closed, then m−1(Y ) ⊆ Ch(X ) and
M−1(Y ) ⊆ Ch(X ) are locally closed.
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Let X op be X with the topology for the reversed partial
order �; that is, the open subsets of X op are the closed subsets
of X , and vice versa. We may rephrase Lemma 6 as follows:

The map (m,M) : Ch(X )→ X op × X is continuous.
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Let
R := C

(
Ch(X )

)
be the C∗-algebra of continuous functions on Ch(X ). Since

PrimR = Prim C
(
Ch(X )

) ∼= Ch(X ),

the map (m,M) turns R into a C∗-algebra over X op × X . We
abbreviate

S(Y ,Z ) := m−1(Y )×M−1(Z ) ⊆ Ch(X );

this is a locally closed subset of Ch(X ) by Lemma 6

Definition
We define the C∗-algebra RY over X in such a way that

RY (Z ) = R(Y op × Z ) = C0
(
S(Y ,Z )

)
for all Y ,Z ∈ LC(X ); here Y op denotes Y with the subspace
topology from X op. Equivalently, we let RY be the restriction
of R to Y op × X , viewed as a C∗-algebra over X via the
coordinate projection Y op × X → X .
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The morphism

KK∗(X ;RY ,A)→ K∗
(
A(Y )

)
is given by

φ→ φ∗(ξ)

where ξ is the class of the trivial bundle on RY (Y ) = Ch(Y ).
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Target category of filtered K-theory

Definition
NT is the Z/2-graded pre-additive category given by natural
transformations of filtered K-theory.

In everyday language, using our representability theorem,

Obj(NT ) = locally closed subsets of X
NT (Z ,Y ) = KK∗(X ;RY ,RZ ) = K∗(RZ (Y )).



Homological
algebra

methods in
the theory of

Operator
Algebras

Ryszard Nest

UCT
The UCT-problem

Projective dimension
one

Abstract UCT

Filtered
K-theory
Representability

Target category

The main results

A counterexample

A cure?

Target category of filtered K-theory

Definition
NT is the Z/2-graded pre-additive category given by natural
transformations of filtered K-theory.

In everyday language, using our representability theorem,

Obj(NT ) = locally closed subsets of X
NT (Z ,Y ) = KK∗(X ;RY ,RZ ) = K∗(RZ (Y )).



Homological
algebra

methods in
the theory of

Operator
Algebras

Ryszard Nest

UCT
The UCT-problem

Projective dimension
one

Abstract UCT

Filtered
K-theory
Representability

Target category

The main results

A counterexample

A cure?

Target category of filtered K-theory

Definition

i) A (countable) module over NT is an additive functor
from NT to the category of (countable) Z/2-graded Abelian
groups.
ii) C denotes the abelian category of countable NT -modules.

FK is the stable homological functor from the Kasparov
category KK(X ) of C∗-algebras over X to C given by

A 7→
{

Y → K∗(A(Y ))
φ → KK(X ;φ,A)

}
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Target category of filtered K-theory

Definition

i) A (countable) module over NT is an additive functor
from NT to the category of (countable) Z/2-graded Abelian
groups.
ii) C denotes the abelian category of countable NT -modules.

FK is the stable homological functor from the Kasparov
category KK(X ) of C∗-algebras over X to C given by

A 7→
{

Y → K∗(A(Y ))
φ → KK(X ;φ,A)

}
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To get acquainted with this approach to natural transformations, we
compute some important examples. Let Y ∈ LC(X), let U ∈ O(Y ), and
Z := Y \ U. There is an extension

RY\U � RY � RU (2.2)

of C∗-algebras over X . This means that there are C∗-algebra extensions

RY\U(Z) � RY (Z) � RU(Z)

for all Z ∈ LC(X). This follows because R is a C∗-algebra over X op × X .
The extension (2.2) is semi-split in C∗alg(X) and hence has a class in
KK1(X ;RU ,RZ ) and produces an exact triangle

ΣRU →RZ →RY →RU (2.3)

in KK(X). The following lemma identifies the natural transformations
corresponding to these maps between representing objects.

Lemma
The maps in the extension triangle (2.3) correspond to the natural
transformations FKU [1]⇐ FKZ ⇐ FKY ⇐ FKU .
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Example
To make our constructions more concrete, we now consider the example
n = 2, which corresponds to extensions of C∗-algebras. There are only
three non-empty locally closed subsets: 1 = [1, 1], 12 = [1, 2], and
2 = [2, 2]. The order complex is an interval; we label its end points 1
and 2. The map (m, M) from Ch(X) = [1, 2] to X op × X maps

1 7→ (1, 1), 2 7→ (2, 2), ]1, 2[ 7→ (1, 2).

Correspondingly, we have

S(1, 1) = {1}, S(1, 2) = ]1, 2[, S(1, 12) = [1, 2[,
S(2, 1) = ∅, S(2, 2) = {2}, S(2, 12) = {2},

S(12, 1) = {1}, S(12, 2) = ]1, 2], S(12, 12) = [1, 2].

Taking K-theory, we get

NT (1, 1) = Z[0], NT (1, 2) = Z[1], NT (1, 12) = 0,

NT (2, 1) = 0, NT (2, 2) = Z[0], NT (2, 12) = Z[0],
NT (12, 1) = Z[0], NT (12, 2) = 0, NT (12, 12) = Z[0].
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Exact modules

Definition
An NT -module M is called exact if the sequences

M0(U)
iV
U // M0(V )

rY
V // M0(Y )

δU
Y
��

M1(Y )

δU
Y

OO

M1(V )
rY
V

oo M1(U)
iV
U

oo

are exact for all V ∈ LC(X )∗, U ∈ O(V ), Y := V \ U.
Notice that we allow U and Y to be disconnected here.
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Lemma
The class of exact modules is closed under direct sums and has
the two-out-of-three property for module extensions.
It contains all free modules and the filtrated K-theory of any
separable C∗-algebra.•
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Main results

we assume that X is linearly ordered
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Theorem
The following are equivalent for an NT -module M:

• M is a direct sum of free modules.
• M is projective.
• M is free as an Abelian group and exact.
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Theorem
The following are equivalent for an NT -module M:

• M has a projective resolution of length 1.
• M has a projective resolution of finite length.
• M is exact.
• M is in the range of filtrated K-theory.

Hence there are NT -modules without a projective resolution of
finite length, but these cannot arise as filtrated K-groups.•
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Application to classification

Theorem
Filtrated K-theory is a complete invariant for
strongly purely infinite, stable, nuclear, separable C∗-algebras
with primitive ideal space X and
simple subquotients in the bootstrap class:

• Two such are isomorphic if and only if their filtrated
K-theories are isomorphic NT -modules.

• An NT -module is the filtrated K-theory of such a
C∗-algebra if and only if it is exact.

For X = {1, 2}, that is, C∗-algebra extensions, we recover a
classification result of Mikael Rørdam. Our proof generalises
the method of Alexander Bonkat.•
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Theorem
Filtrated K-theory is a complete invariant for
strongly purely infinite, stable, nuclear, separable C∗-algebras
with primitive ideal space X and
simple subquotients in the bootstrap class:

• Two such are isomorphic if and only if their filtrated
K-theories are isomorphic NT -modules.

• An NT -module is the filtrated K-theory of such a
C∗-algebra if and only if it is exact.

For X = {1, 2}, that is, C∗-algebra extensions, we recover a
classification result of Mikael Rørdam. Our proof generalises
the method of Alexander Bonkat.•
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A counterexample

A space for which filtrated K-theory is not enough
Topologise Zn := {0, . . . , n} such that Y ⊆ Zn is open if and
only if 1 ∈ Y or Y = ∅.

• For n ≤ 2, filtrated K-theory is a complete invariant
for C∗-algebras over Zn.

• This fails for n = 3.
But we can get a complete invariant by adding
another K-theory functor to filtrated K-theory.

• It is unclear how to proceed for general n.•
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The ring of operations

• Since the partial order on Zn has length 1, it is easy
to describe representing objects for K∗

(
A(Y )

)
for

Y ∈ LC(X )∗ and compute the relevant K-groups.

• They are of the form K∗(SYZ ) for subsets of the star with
n ends.

• The ring of natural transformations on filtrated K-theory is
generated by inclusions of open subsets, restriction to
closed subsets, and boundary maps.
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For n = 3, we get the following diagram:

01 //

!!

012

##

1
◦
��

0

??

//

��

02

==

!!

013 // 0123

==

//

!!

2 ◦ // 4

03

==

// 023

;;

3

◦

@@

The relations can also be described explicitly.•
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What works

• For all spaces Zn, the ring of natural transformations has
the expected generators and relations.

• It is a semi-split extension of the semi-simple ring ZLC(Zn)∗

by a nilpotent ideal.
• All projective modules are direct sums of free modules,
and a module M is projective if and only if it is
free as an Abelian group and TorNT1 (NT ss,M) = 0.•
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What fails

• But there are three arrows to 1234 in the diagram
describing NT .

• Exactness of a module is not sufficient to ensure that
K 7→ Kss preserves injective maps.

Theorem
For the space Z3, there is an NT -module that is exact and free
as an Abelian group but not projective.
If PY denotes the free module FK (RY ), then we may take the
cokernel P of the canonical map

P0123 → P012 ⊕ P013 ⊕ P023.

This map is injective but induces the zero map on the
semi-simple parts.•
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Counterexample to classification

Theorem
There is an NT -module with
no projective resolution of length 1.

An example is the cokernel of the injective morphism

P p·−→ P

Theorem
There are two strongly purely infinite, stable, nuclear, separable
C∗-algebras with primitive ideal space Z3 and simple
subquotients in the bootstrap class with isomorphic filtrated
K-theory which are not KKZ3-equivalent.•
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Enriched filtered K-theory
Let Re be the mapping cone of

R012 ⊕R023 ⊕R013 → R0123.

Let FKe = FK ∪ K e , where

K e
∗ (A) = KK∗(Z3;Re ,A)

Let NT e be the category of natural transformations of FKe .
The resulting enriched filtered K-theory again satisfy the main
theorems, the exact modules are of projective dimension one
and every exact module is in the range of enriched filtered
K-theory.
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